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Abstract 

The cubic-tetragonal phase transition at 571 K of 
the aluminate sodalite Sr8[AI12024](MoO4)2 (SAM) 
has been studied by following the position of the 
(pseudo-)cubic {400} reflections as a function of 
temperature. The high resolution of the synchrotron 
powder diffraction experiment allowed the tempera- 
ture dependencies to be followed with good preci- 
sion. The tetragonal a lattice parameter appears to 
be a linear extrapolation of the cubic one, with only 
a small upward shift at the transition, whereas the c 
parameter decreases strongly below 571 K. These 
observations can be explained by a model which 
assumes the superposition of a ferroelastic strain 
component, and a volume strain component. The 
volume strain can be rationalized as being the result 
of a 'shearing' of the sodalite framework. Causes and 
consequences of the 'shearing' in relation to the 
sodalite framework are discussed. The weakly first- 
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order transition is nearly tricritical; power-law 
exponents seem to be influenced by defects. The 
thermal expansion of the cubic lattice parameter, as 
well as of the tetragonal a axis, is nearly linear. The 
linear thermal-expansion coefficient a is 8.6 (4)x 
10-6K -1. The tetragonal c axis also expands 
linearly between room temperature and about 
To-100 K with practically the same coefficient, but 
behaves non-linearly nearer to the transition tem- 
perature. 

Introduction 

Aluminate sodalites of the general formula 
Ms[AlI2024](X04)2, where X = S, Cr, Mo, W, ... and 
M represents Ca or Sr, have been studied in 
our group for some time (Depmeier, 1988). For all 
pure end members of the family, one or more struc- 
tural phase transitions have been identified by vari- 
ous methods (Depmeier, 1988). It was found that 
most of the phase transitions are of ferroic character. 
For the title compound, Sr8[AlizO24](MoO4)2 (SAM 
for short), in particular, a temperature-dependent 
neutron powder diffraction study revealed the 
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potentially ferroelastic character of its weakly first- 
order phase transition at 571 K (Depmeier & Bfihrer, 
1991). Because of the limited resolution of that 
experiment, and owing to the small number of full 
data sets which could be collected at different tem- 
peratures in the available time, only preliminary 
statements on the temperature-dependent behaviour 
of SAM could be made. It was stated that future 
experiments, with better resolution in both reciprocal 
space and temperature, should concentrate on the 
region close to the phase transition in order to obtain 
more reliable results. Such an improved experiment 
has now been performed using synchrotron radiation 
and a newly developed furnace (Arnold, 1991). 

One purpose of the present paper is to report the 
magnitude and temperature dependence of some 
quantities, such as lattice parameters, spontaneous 
strain and excess volume, and to relate them to each 
other. Furthermore, we want to discuss a hitherto 
not appropriately dealt with microscopic distortion 
mechanism of the sodalite framework, shearing, 
which is the cause of the observed volume reduction 
of the unit cell. 

The present experiment still has its limitations. 
Only one aspect of the nature of the phase transition 
could be investigated, i.e. we studied the evolution of 
the metrical relationships, rather than attempting to 
determine the structural aspects of the phase transi- 
tion. The present results already enable us to draw 
some conclusions which are important not only for 
the understanding of SAM, but of the sodalite family 
as a whole (cf. Depmeier & Biihrer, 1991; D&B 
hereafter, and referencesgiven therein). 

Experimental details 

As-synthesized samples of SAM corresponding to 
those of the earlier neutron powder experiment 
(D&B) were used. The ground powders were mixed 
with a binder and packed into the sample holder. 
The diffraction experiment was performed on 
the Aachen/Frankfurt  (Darmstadt)/Tiibingen powder 
diffractometer (Arnold et al., 1989) with synchrotron 
radiation of ~ = 1.2122A from an Si(511) mono- 
chromator at beamline B2 of HASYLAB at DESY, 
Hamburg, Germany. The furnace was described by 
Arnold (1991). The transition temperature was 
assumed to be 571 K (Depmeier, 1988). This tem- 
perature was used to calibrate linearly the nominal 
temperatures as measured by thermocouples in the 
two halves of the furnace. The temperature stability 
was about 0.2 K, and the maximum deviation 
between nominal and calibrated temperature was 
about 50 K. Because of uncertainties in the cali- 
bration procedure and owing to the probable pres- 
ence of a temperature gradient across the sample, the 

Table 1. Measured tetragonal and cubic (italic) lattice 
parameters (A) at, el, ac of  Srs[Al12024](MoO4) 2 
aluminate sodalite (SAM) as a function of  tempera- 

ture, and derived quantities 

Derived quantities are the volume V, the excess volume d = Vo- V 
and the excess lattice parameter ~ = ao-V ''3. Vo and ao are 
extrapolations from the cubic values by linear regression. Errors 
are estimated to be 0.001 A in the lattice parameters and 0.3 A 3 in 
the volume. 

T ( K )  a,, a,. c, V A 8 
300.0 9.456 9.403 840.8 4.2 0.016 
385.4 9.462 9.412 842.7 4.3 0.016 
428.0 9.465 9.418 843.7 4.3 0.016 
470.7 9.470 9.425 845.2 3.8 0.014 
513.3 9.474 9.435 846.9 3.1 0.011 
521.9 9.475 9.437 847.2 3.0 0.011 
526.2 9.476 9.439 847.6 2.7 0.010 
530.4 9.476 9.440 847.7 2.7 0.010 
534.7 9.477 9.442 848.0 2.5 0.009 
539.0 9.477 9.443 848.1 2.5 0.009 
547.5 9.478. 9.446 848.6 2.2 0.009 
556.1 9.478 9.450 848.9 2. i 0.007 
564.6 9.480 9.456 849.8 ! .4 0.005 
568.0 9.480 9.459 850.1 1.2 0.004 
572.3 9.477 851.2 
573.1 9.478 851.4 
64 1.4 9.484 853.1 
726.8 9.492 855.2 
8 i 2.1 9.498 856.8 

temperatures reported here are estimated to be cor- 
rect to within ___ 5 K. 

Results 

The 20 positions of the reflections from (pseudo- 
cubic) tetragonal {400} and (004), or cubic {400} 
planes, respectively, were determined and the corre- 
sponding lattice parameters calculated (Table 1). It is 
not easy to give a reasonable estimate of the errors in 
the (pseudo-)cubic lattice parameters, the largest 
source of error probably being the uncertainty in the 
temperature measurement (see above). We estimate 
the error to be of the order of +- 0.001 A,. From error 
propagation the calculated uncertainties in the values 
for the unit-cell volume, the spontaneous strain and 
the coefficient of the linear thermal expansion are 
then ----_0.3/~ 3, "--7 x 10-5 and 4 × 1 0 - 7 K  -1, respec- 
tively. Just below the transition an apparent increase 
of the width of the tetragonal {400} reflection 
indicated an overlap with co-existing cubic {400} 
reflections. It is not clear, whether this effect is 
caused by a small hysteresis associated with the 
weakly first-order character of the phase transition, 
or from a temperature gradient across the sample. 
Since a deconvolution was believed to result in 
ambiguities, it was decided to exclude the tempera- 
ture range between Tc and about T o - 2  K from 
further consideration. 

Fig. 1 shows the determined lattice parameters ac 
(crosses), a, (squares) and e, (circles), where sub- 
scripts c or t indicate the cubic or tetragonal phase, 
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respectively. A thin solid line represents a linear 
regression fit to the values of a~ as a function of 
temperature. Extrapolation of this line into the field 
of the tetragonal phase is marked a0. The dot-dashed 
line in the tetragonal phase represents the cube root 
of the unit-cell volume V ~/3. Of course, this value 
coincides with a¢ in the cubic phase, and should 
practically coincide with ao in the tetragonal phase, if 
the phase transition was to be classified as proper 
and pure ferroelastic (Salje, 1990), with a traceless 
tensor of the spontaneous strain. Obviously, as this is 
not the case, it has to be considered as possibly 
improper and/or impure therefore. This is supported 
by the knowledge (D&B) that the phase transition 
involves a symmetry change from l m 3 m  to I 4 / a c d ,  
and a doubling of all three cubic basic vectors. The 
transition is therefore improper ferroelastic. 

The expression for the symmetry-adapted spon- 
taneous strain is (Salje, 1990): 

el  = 1/31/2(2e3 - el - e2) = 2/3'/2(e3 - el). (1) 

From Fig. 1 it is clear that a, coincides practically 
with a0, hence el = 0, and 

e, -- 2/31/283. (2) 

The observed enlargement of the unit cell across the 
phase transition testifies to its improper character. 
The coupling between the spontaneous strain and the 
primary order parameter is therefore linear- 
quadratic, 

e, oc QE, (3) 

where the primary order parameter Q is given in a 
simplified form, thus neglecting its actual six- 
component character. 

The (pseudo-)cubic unit-cell volumes V, V~ and V0 
are shown as a function of temperature in Fig. 2. Vo 
is the extrapolation of V~ into the tetragonal phase. 
Because of the first-order character of the phase 
transition, d V~ V = (Vo - lO/V  is allowed to change 

. . . .  i . . . .  t . . . .  i , . ' , . . . .  i , . ' L . s * - - ~  . . . .  

. _ . , , . ~ / - ~ j  a c 
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Fig. I. As-measured cubic ac (crosses), tetragonal a, (squares) and 
tetragonal c, (circles) lattice parameters as a function of tem- 
perature. The linear regression line to the experimental values of 
ac extrapolates into the tetragonal phase (thin line, ao). The cube 
root of the pseudocubic cell volume is also shown. 

discontinuously at T~. Again because of the zone 
boundary transition, 

A V / V  oc Q2 (4) 

to lowest order. Hence, we find 

el oc Q2 ~x AV/V. (5) 

2 ( A V / V )  2 against (To T), for T not Plots of e, or 
too far from To, result in fairly linear relationships 
(Fig. 3). If as usual we set Q ~ (To - T) a, the almost 
linear relationships show that /3 =0.25,  and the 
phase transition is therefore nearly tricritical. 
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Fig. 2. Unit-cell volumes F~ and V in the cubic and tetragonal 
phases, respectively, as a function of temperature. The thick 
curve joining the experimental data (open circles) is a guide to 
the eye. The linear regression line (thin line) to the cubic values 
extrapolates into the tetragonal phase, Vo. 
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Fig. 3. e, 2 and (AV /V)  2 as a funct ion o f  temperature. The l inear 
behaviour demonstrates the nearly tr icr i t ical  behaviour of  the 
primary order parameter. Solid lines are guides to the eye. 
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Power laws can also be fitted to e, and A V/V in 
Figs. 1 and 2, respectively. The resulting exponents 
( -0 .3 )  deviate quite strongly from the expected 
value (0.5) derived from the relationships (3)-(5). 

Discussion 

SAM has space groups Im-3m and 141/acd in its high- 
and low-temperature phases, respectively. The cubic 
lattice parameter a is about 9.5 A and the tetragonal 
unit cell is a 2a, 2b, 2c multiple of the cubic cell. The 
lattice parameters quoted in this work refer to a 
(pseudo-)cubic cell without any multiplicity taken 
into account. 

An apparent discrepancy (about 0.02 ~,) between 
the absolute values of the lattice parameters reported 
in D&B and found in this study is almost certainly 
due to the uncertainty in the neutron wavelength 
used (B/ihrer, 1991). The temperature dependencies 
agree well, however. 

One of the most conspicuous results of this study 
on SAM is the almost one-dimensional contraction 
of its unit cell across the phase transition, as revealed 
by Fig. 1. This is unexpected and surprising in view 
of the three-dimensional sodalite framework and its 
latent cubic symmetry. A model which explains this 
behaviour relies on the partition of the total spon- 
taneous strain et into two different mechanisms, viz. 
(i) a symmetry-breaking ferroelastic spontaneous 
strain es and (ii) an additional, non-symmetry- 
breaking volume strain ev. We set 

es = (2ey - e l , -  e2,) (6) 

and 

ev = (e3,, + el,, + e2,,), (7) 

where primed and double-primed symbols refer to 
mechanism (i) or (ii), respectively. If 

el, "" el,, and e2, = e2,, (8) 

one obtains 

es + ev = 2ey + e3,,, (9) 

which may be compared with the expression for el in 
(2). Thus, because of the accidental near equality (8), 
the two effects happen to compensate each other in 
the tetragonal a directions, whereas they add up in 
the c direction. Actually both e3, and ey, express a 
shrinking of c. From (9) it can be seen that both add 
up to a higher degree of shrinking than would be 
caused by either effect alone. The net result of (6)-(9) 
is the experimentally observed nearly one-dimen- 
sional volume change. 

Structural work (D&B) indicates that the volume 
component e, in the mechanism described is almost 
isotropic, i.e. ey, =el, ,  = e2,,. This information can 
be employed to convert the observed excess volume 

(Fig. 2) into 'correction terms' for the observed 
lattice parameters. One can then calculate a 'spon- 
taneous strain', in the absence of an excess volume, 
and fit it to (To-  T). This procedure allows the 
temperature dependencies of the lattice parameters 
to be modelled very well, as shown by the solid 
curves in Fig. 4. 

We now discuss in some detail the question of how 
the volume reduction may be brought about. 
Possible clues are provided by the structure deter- 
mination of SAM (D&B). The main structural 
changes which happen at the cubic-tetragonal phase 
transition of SAM are: 

(i) A freezing of the MoO4 tetrahedra, which are 
dynamically disordered over six equivalent, so-called 
'tetragonal', orientations in the cubic phase. In the 
low-temperature phase the MoOn tetrahedra are 
ordered, the 'tetragonal' orientation, however, is 
preserved. 

(ii) A concomitant modulation of the Sr cation 
positions. 

(iii) A particular distortion pattern of the sodalite 
framework ('shearing'). 

All three mechanisms are in agreement with the 
symmetry reduction from Im3m (a~, a2, a3 unit cell) 
to Inl/aCd (2al, 2a2, 2a3 unit cell), and correspond to 
either the N (  or N2- irreducible representation of 
lm-3m (D&B; Stokes & Hatch, 1988), but only (iii) 
gives rise to a substantial volume reduction of the 
sodalite framework and, thus, of the unit cell of 
SAM. 

Shearing is not the sole distortion mechanism of a 
sodalite framework that is capable of reducing the 
unit-cell volume. This is illustrated in Fig. 5, where 
lattice parameters are indicated by tick marks. Fig. 
5(a) represents an elemental fragment of an ideal, 
undistorted, fully expanded sodalite framework. The 
framework is in its topological, i.e. highest possible 
symmetry, space group Im3m. In Figs. 5(b)-5(d) 
three distinct distortion mechanisms are shown 
which reduce the (pseudo-)cubic lattice parameters, 

947 

~ 9 4 4  

• ~ 9 41 

. . . .  ' . . . .  ' . . . .  ' . . . .  ' . . . .  ..i._ .~ ,  . ; -  ; - > ' ~  . . . .  
t -  ac 

atcalc , ~ ~  ---~-'* 
a ,  ~ 
a o  

V1/3 

ct 
S A M  

9 38 . . . .  i . . . .  i , , , , i . . . .  i . . . .  i . . . .  i , . , i 

200 300 400 500 600 700 800 900 

Temperature (K) 

Fig. 4. Experimental at and e, values (open symbols), and the 
modelling functions at~.c and e,=lc (thick solid curves), as a 
function of temperature, ac, ao and V ~3 as in Fig. 1. 
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and thereby the volume of the unit cell, but carry 
different symmetry properties. 

(I) In Fig. 5(b) the so-called ' tetragonal tetrahe- 
dron'  distortion is shown. When acting alone this 
mechanism preserves the symmetry. For alumino- 
silicate sodalites the extent of this distortion has 
been found to depend sensitively on the average 
framework composition, but to be independent, to a 
first approximation, of the non-framework species 
(Depmeier, 1984a). The tetragonal tetrahedron dis- 
tortion is very important for aluminate sodalites, but 
it is not supposed to, and indeed does not, change 
significantly at the cubic-tetragonal phase transition 
of SAM (D&B). 

(II) The well known tilt mechanism of Fig. 5(c) 
also reduces the volume ('partial collapse'). The tilt 
mechanism can be considered as the response of  a 
given sodalite framework to the incorporation of 
spherical cage ions of different sizes. It destroys the 
centre of symmetry, but preserves the cubic system. 
The highest possible symmetry reduces from Im-3m to 
/43m. Since the space groups of both phases of SAM 
are centrosymmetric, the tilt is not regarded as play- 
ing a significant role in its phase transition. This is 

supported experimentally by the structure refinement 
(D&B). 

(III) Fig. 5(d) now illustrates the so-called 'confor- 
mational shearing' (Depmeier, 1983b, 1984b, 1988). 
This mechanism is characteristic for ordered 
aluminate sodalites, and is closely related to the 
presence of tetrahedral cage anions, their ' tetragonal '  
orientation, and their mutual arrangement (Fig. 6). 

The first two mechanisms have been described 
elsewhere (Depmeier, 1984a), the third will be dis- 
cussed here, in order to help understand our actual 
problem: Without going into too much detail we 
mention beforehand that the sodalite framework can 
be described as being composed entirely of so-called 
4-rings (rings of four corner-connected 704 tetra- 
hedra). The conformational shearing concerns the 
4-rings. It can be regarded as a shear-like distortion 
of the rings, brought about by cooperative rotation 
of the rigid tetrahedra about axes which are perpen- 
dicular to the plane of the undistorted 4-ring and 
which pass through the corresponding T atoms. The 
degree of rotation can be measured by the angle r. A 
r value of 0 ° would correspond to the situation in 
Fig. 5(a). Appropriate signs for the rotation can also 

7 

Ideal Angular distortion Tilting I dea l  Shearing 
(a) (b) (c) (d) 

Fig. 5. Distortion mechanisms of a sodalite framework. Only a part of the framework is shown. Tick marks in the respective margins 
indicate the lattice parameter. (a) An ideal framework showing the maximally attainable lattice parameter. (b) Tetragonal tetrahedron 
distortion. (c) The tilt mechanism. (d) The shearing mechanism. 

/ y y 

Fig. 6. 'Sheafing' (Fig. 5d) is the result of repulsive interactions between oxygens of tetrahedral anions and of a 4-ring of the framework. 
The tetrahedral cage anions must not only be in a special orientation ('tetragonal orientation'), but neighboufing anions must also 
have a particular mutual arrangement, as shown on the left side. The situation on the right-hand side does not result in sheafing. 
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be defined. In projection, such as in Fig. 5, 4-rings 
affected by shearing become rhombs, rather than 
squares. 

Shearing is not an innate property of the bare 
sodalite framework, but results from repulsive inter- 
actions between oxygens of the cage anions and of 
the sodalite framework, such that the non-bonded 
O.-.O interatomic distances remain above about 
2.7 A (cf. Hyde, Sellar & Stenberg, 1986). A quite 
intuitive picture of such interactions can be found 
elsewhere (Depmeier, 1988). Special geometric condi- 
tions must be met for shearing to occur (Fig. 6). In 
fact, sodalite frameworks can be imagined which 
exhibit no shearing, despite the presence of ordered 
cage anions in 'tetragonal orientation' (see, e.g. ,  Fig. 
1 of Depmeier, 1988). 

Unlike the tilt mechanism, conformational shear- 
ing is a local effect, as the cooperation is restricted to 
isolated 4-rings. Therefore, neighbouring 4-rings 
having the same orientation with respect to (100), 
may have shearings of different magnitudes and 
signs. Shearing systems can be conceived as occur- 
ring with respect to one, two or three of the (100) 
directions. Usually, shearing will break the cubic 
symmetry. On the other hand, the centrosymmetry is 
not necessarily broken, as shown by SAM. Further- 
more, complex superstructures can be formed, which 
are, indeed, typical of aluminate sodalites. The 
particular shearing patterns in the (001) and {100} 
planes of the room-temperature phase of SAM dis- 
play its tetragonal symmetry (Fig. 7). Besides, unlike 
the tetrahedron distortion and tilt mechanisms, 
shearing results in changes in the fractional coordi- 
nates of the T (i.e. A1) atoms, because translational 
movements of the relatively rigid 704 tetrahedra are 
inherently involved. 

A given shearing system reduces the translations 
along those (100) directions which are normal to its 
axis. For the special case of Fig. 5(d) one can easily 

obtain the expression 

a' = d(1 + cost) + 2 t c o s v c o s r ,  (10) 

where a' is a pseudocubic lattice parameter in the 
plane normal to the axis of the shearing system, d is 
the length of the 704 tetrahedron edge, t is the 
height of a tetragonal face and v is the angle between 
t and the height of the tetrahedron. For regular 
tetrahedra v is 35.26 °. Values for r different from 0 ° 
result in a lattice parameter a', which is smaller than 
the unaffected one. 

Quite obviously, (10) is only valid for the specific 
case shown in Fig. 5(d). Other patterns of shearing 
systems require different expressions. Furthermore, 
for real systems, such as that of SAM (Fig. 7), small 
secondary contributions from mechanisms (I) and 
(II), as well as irregular distortions of the 704 tetra- 
hedra, must also be taken into account. This may 
even be the case in the absence of actively acting 
mechanisms (I) or (II) as primary distortion 
mechanisms. 

It is easy to show that the excess volume A = 
V0-V,  and also the excess lattice parameter 8 = a0 
- V ~/3, are proportional to -r 2. The shearing can also 
be expressed by the shift s c of the oxygens along the 
diagonal of a 4-ring, away from the cubic positions 
(Fig. 6). Geometrically s ¢ ~ l +  s i n r - c o s t ,  hence, 
sc ocr for small, i.e. meaningful, values of r. It can be 
expected that s c is proportional to the combined 
Coulombic forces directed in opposite directions 
along the diagonal of a 4-ring of the framework. The 
forces result from the repulsive O-.-O interactions 
between two anion tetrahedra and the embraced 
4-ring (see left-hand side of Fig. 6). On the other 
hand, the distortion measured by ~¢ should be 
inversely proportional to the resistance of the 
framework to this action, i.e. its elastic stiffness. If 
the geometrical relationships are different, such as 
shown on the right-hand side of Fig. 6, shearing does 

: y 

Fig. 7. The projection of the framework of the room-temperature phase of SAM along [001] and [100] (left) demonstrating the different 
shearing patterns. 
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not occur. The magnitudes of ¢, z, ~ and A may be 
supposed to vary significantly from one sodalite to 
another, as these quantities depend on geometrical 
conditions, controlled by atomic sizes, effective 
charges, and elastic properties of the framework. 

Despite several attempts it has not been possible to 
find a structural parameter which describes the 
shearing mechanism in such a simple and intelligible 
manner as, e.g., the tilt angle describes the partial 
collapse. In an attempt to overcome this problem, at 
least in part, the use of a so-called distortion param- 
eter D was proposed, which measures the average 
angular distortion of the 4-rings of a given sodalite 
framework, if necessary for different directions 
(Depmeier, 1983a,b). For the determination of this 
parameter the structure must be known in detail. In 
the particular case of SAM the structure determina- 
tion (D&B) demonstrated that the magnitudes of the 
D values in different directions are about the same, 
despite the fact that the cubic symmetry is broken 
and the patterns of deformation are different (Fig. 
7). Hence the statement given above, namely that for 
SAM the volume reduction caused by shearing is 
practically isotropic. Shearing results from the 
peculiar oxygen-oxygen interactions described 
above. It is therefore unlikely to occur in sodalites 
containing spherical cage anions. The question, 
whether non-spherical anions of a shape different 
from that of a tetrahedron can also produce a kind 
of shearing, remains to be studied. 

The cubic-tetragonal phase transition of SAM 

For the sake of argument we neglect for a moment 
the fact that the phase transition is slightly first 
order. This seems to be justified, because it is known 
that the character of the transition can be pushed 
towards being 'less discontinuous' by changing the 
composition (Setter & Depmeier, 1984). 

The following scenario describes how the phase 
transition might be imagined to happen: Although it 
has not yet been conclusively established, there is 
every reason to believe that the cage anion tetrahedra 
in the cubic phase are dynamically disordered. The 
tetrahedra jump between six so-called 'tetragonal' 
orientations (Depmeier, 1984b), the residence time in 
each such state being considerably longer than the 
jump time. The probability of finding a tetrahedron 
in a given orientation i (i -- 1, ..., 6) is p,. = ~. In each 
'tetragonal' orientation state the cubic symmetry 
around a given MoO4 tetrahedron is locally and 
instantaneously broken. The framework may feel the 
broken symmetry as well, and under certain condi- 
tions local shearings may occur. On the time scale of 
the X-rays the cubic phase is realized by averaging 
over regions of lower local symmetry, fluctuating in 
space and time. The size of these regions may change 

as a function of temperature. It is beyond the scope 
of this paper to discuss this interesting point any 
further. 

During the phase transition the anion tetrahedra 
start to prefer certain out of the, under cubic sym- 
metry equivalent, ' tetragonar orientations, such that 
the Pi become unequal on the X-ray time scale, and 
the symmetry is broken. The unit cell relaxes in 
response to these microscopic distortions and a 
macroscopic spontaneous strain is built up. 

As neighbouring anions take their respective 
'correct' orientation, the fluctuating local shearings 
also become progressively stable and result in the 
described macroscopic volume strain. 

A scalar parameter which describes locally the 
ordering of a given MoO4 tetrahedron, is 

K=Pi-½Z pj( i , j=l , . . . ,6) .  ( l l )  
j ~ i  

x is zero in the cubic phase and non-zero in the 
tetragonal phase. It approaches unity when the cage 
anion becomes fixed in its appropriate tetragonal 
orientation. This is not the global order parameter 
OP of the phase transition, which, of course, must 
conform with the N{ or N2- irreducible representa- 
tion of Im3m, identified to drive the transition 
(D&B). For the discussion of OP its multi- 
component character has to be taken into account, 
such that the OP is a linear combination of its 
components 'JTi with i = l, ..., 6. It can be found, for 
instance in the tables of Stokes & Hatch (1988), that 
the direction of the six-component vectorial OP, 
which leads to the stable solution I4Jacd for 
the N~- or N2 irreducible representation of Irn-3m, is 
given by the symbol P9, with components (a, a, a, 
- a ,  0,0). 

The tables of Stokes & Hatch (1988) indicate that 
Landau theory allows the phase transition, driven by 
either_possible irreducible representations N~- or N2 
of Im3m, to be continuous. However, the experi- 
mental facts, for example the discontinuity of the 
lattice parameters, the small hysteresis, the coexis- 
tence of the two phases, and the latent heat 
(Depmeier, 1988), demonstrate that the transition is 
weakly first order. We do not wish to explore the 
causes for the discontinuous character here, but just 
mention negative coefficients of the quartic terms 
of the free energy expansion, possibly driven negative 
by coupling with elastic spontaneous strain (see, e.g., 
Salje, 1990), as possible candidates for an explana- 
tion. This is supported by the observation that 
changing the composition is able to drive the char- 
acter of the transition towards being less discon- 
tinuous, judged by the diminishing heat of transition 
(Setter & Depmeier, 1984). Hence, it is at least 
conceivable that under certain conditions a composi- 
tionally altered SAM crystal will undergo a con- 
tinuous phase transition. 
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It should be noted that for the present case 
renormalization group theory predicts an instability 
against critical fluctuations, and does not therefore 
allow continuity (cf. Stokes & Hatch, 1988). How- 
ever, the Ni- and N~- irreducible representations are 
associated with six-component order parameters, and 
doubt has recently been cast upon renormaliza- 
tion group theory in cases of multi-component order 
parameters (Meimarakis & Tolrdano, 1985). There- 
fore, the experimentally observed discontinuities 
should not necessarily be considered as a manifesta- 
tion of the predictive power of renormalization 
group theory. 

It was stated earlier that the numerical values for 
the exponents of the power laws fitted to e, and 
zaV/V ( -0 .3 )  deviate quite significantly from the 
expected value, 0.5, derived from the relationships 
(3)-(5). We propose to regard these 'non-classical' 
values as not definite and, therefore, subject to 
revision by future studies. The main reasons for 
choosing this caveat are (i) the weakly first-order 
~haracter of the phase transition, (ii) the necessity to 
exclude the region just below T~, and thus the critical 
region, if there is any in SAM, (iii) the quite high 
uncertainty in the temperature, and (iv) the use of 
as-synthesized samples. These samples have not been 
characterized with respect to the defect density, nor 
to the nature of the defects. In this connection it is 
interesting to note that the structure determination 
of SAM was successful with single-crystal data, but 
the refinement was not. The refinement was therefore 
carried out on powder data (D&B). Tol~dano (1984) 
discussed the frequently found deviations of power- 
law exponents from predicted values, particularly in 
the case of ferroelastic phase transitions, and 
emphasized the importance of defects for such obser- 
vations. He highlighted the fact that coupling of 
defects with the OP should be outstandingly impor- 
tant for incommensurately modulated phases. We 
recall that certain phases of aluminate sodalites, 
including SAM, can conveniently be described as 
modulated - others are in fact incommensurately 
modulated (Depmeier, 1992) - and propose that this 
point should be considered in more detail. 

It is also interesting that Giddy, Dove & Heine 
(1989) suggest the possibility of explaining 'non- 
critical, non-standard' values of fl exponents by 
strongly temperature-dependent fourth-order-term 
coefficients in the conventionally used Landau free- 
energy expansion, and raise the question as to 
whether the polynomial approach is actually appro- 
priate. Salje (1986) points to the importance of non- 
linear relationships between microscopic and 
macroscopic strains in certain structures also giving 
rise to non-standard exponents. It has been stated 
earlier that the volume component of the strain in 
SAM depends in a complicated way on the peculiari- 

ties of the structure, and the mutual interactions of 
the substructures. The ferroelastic component may 
also be expected to depend in a complex way on 
these interactions, and nonlinear relationships, as 
mentioned by Salje (1986), may well be present in 
aluminate sodalites. 

For future work aimed at the determination of 
critical exponents of the phase transition, it may be 
preferable to concentrate on measuring the tempera- 
ture dependence of the intensities of superstructure 
reflections, rather than measuring the splitting of 
main reflections as in the present study. Superstruc- 
ture reflections should reflect the order parameter 
associated with the transition more directly. Thus, 
the problem of overlap, as encountered in the present 
study, could be avoided, or reduced, and access to 
the critical region becomes easier. 

In order to compare SAM with other materials, it 
is convenient to use a scalar spontaneous strain, es¢, 
such that es¢ = (Y'e,2.) 1/2. With the e; as defined above, 
and using the room-temperature values of at, et and 
a0, we obtain 5.3 x 10 -s, a rather small value, which, 
however, is in good agreement with other improper 
ferroelastics (cf. Tolrdano, 1974). 

Thermal expansion 

Fig. 1 indicates that below about T c -  100 K the 
thermal expansion of both a, and e, becomes similar 
to that of ac in the cubic phase. In the intermediate 
temperature range, at and e t behave quasi-linearly 
and highly non-linearly, respectively. The cubic ac 
curve extrapolates quite smoothly into that of at. 
Supposing a linear relationship between a~ or at, and 
T, and using the data points at 812 and 300 K, we 
can calculate the linear thermal-expansion coefficient 
a = 8.6 (4) x 10 - 6  K - l  

This value is smaller than that reported in the 
earlier neutron work (D&B): 12 x 10-6K -1. The 
reason for this discrepancy is that the value in D&B 
was calculated from the cube root of the pseudocubic 
cell volume, rather than from the at values as in the 
present work. If the neutron results are treated in the 
same manner, an excellent agreement is obtained. 

Fig. 1 demonstrates that at temperatures well 
below T~ the thermal expansion of c, is similar to 
that of at. Thus, it seems reasonable to assume that 
for a a value of about 8.5 x 10 - 6  K -1 can be 
regarded as characteristic of a fully expanded 
aluminate sodalite, provided that the effects of the 
phase transition can be neglected. 

Henderson & Taylor (1978) studied the thermal 
expansion for a whole series of synthetic alumino- 
silicate sodalites. Those sodalites which could be 
considered to be fully expanded, or to approach this 
state, showed coefficients a which are comparable 
with that of SAM. Sodalites with smaller lattice 
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constants, indicating partial collapse via the tilt 
mechanism, exhibited greater values. For higher 
degrees of partial collapse the behaviour became 
quite complex. Obviously, the contribution of the tilt 
mechanism to the thermal expansion is significant. 
For the fully expanded SAM no tilt mechanism is 
active. Furthermore, the (static) shearing mechanism 
is absent in the cubic phase, and can be supposed to 
be saturated in the region where a t and ct change 
linearly. The value of about 8.5 x 10 -6 K - !  for the 
linear thermal-expansion coefficient a should there- 
fore be regarded as essentially reflecting the contri- 
bution from the normal bond-length expansion. 

Concluding remarks 

The present work was undertaken in order to shed 
some light on the phase transition behaviour of 
aluminate sodalites in general, and of the fully 
expanded SAM in particular. Special emphasis was 
given to the discussion of a special type of symmetry- 
breaking framework distortion, termed 'shearing', 
which is responsible for a volume reduction of the 
unit cell. The peculiarities of the phase transition of 
SAM at 571 K, i .e .  the quasi-one-dimensional 
volume contraction of the unit cell, were explained 
by the proposed superposition of two strain com- 
ponents - associated with the shearing and a ferro- 
elastic distortion of the unit cell, respectively - such 
that both components add up for the tetragonal 
(pseudocubic) c lattice parameter, but cancel out for 
a. Power-law behaviour is observed for the coeffi- 
cient of the spontaneous strain and for the excess 
volume, with exponents which indicate the nearly 
tricritical character of the transition. Deviations 
from the classical values are probably related to 
defects. 
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Abstract 

The crystal structure and ionic distribution in the 
conduction planes in neodymium-doped Na ÷ 
fl"-alumina [refined composition: Nao.58 (2)Nd0.36 (1)- 
Mgo.67Allo.33O17, M r - - 6 3 2 . 2 ]  has been investigated 

at room temperature by single-crystal X-ray diffrac- 
tion (Mo Ka radiation, A = 0.71073/~). The layered 
structure of this solid laser-like material comprises 
spinel-type blocks of ml 3÷, Mg 2÷ and 0 2- ions 
which interleave two-dimensional conduction planes 
containing the Nd 3÷ and Na ÷ ions. The spinel 
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